Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 3(1): e648, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36629495

RESUMO

The chemical synthesis of a riboside phosphoramidite has been achieved to provide a 5-O-capture linker and a 2-O-silyl ether protecting group with the intent of enabling an efficient solid-phase purification of synthetic DNA sequences. The riboside phosphoramidite has been incorporated into a DNA sequence while performing the penultimate automated solid-phase synthesis cycle of the sequence. The terminal 5-O-riboside moiety of the resulting DNA sequence is then conjugated to a capture linker to create an anchor for the solid-phase purification of the DNA sequence conjugate. Release of all DNA sequences from the synthesis support is achieved under standard basic conditions to yield a mixture of the desired DNA sequence conjugate along with unconjugated, shorter-than-full-length sequence contaminants. Upon exposure of all DNA sequences to a capture solid support, only the DNA sequence conjugate is chemoselectively captured, thereby allowing the unconjugated shorter-than-full-length DNA sequences to be efficiently washed away from the capture support. After 2-O-cleavage of the silyl ether protecting group from the terminal riboside ethylphosphate triester conjugate, the solid-phase-purified DNA sequence is efficiently released from the capture support through an innovative intramolecular cyclodeesterification of the ethylphosphate triester, prompted by the riboside's rigid cis-diol conformer, to provide a highly pure DNA sequence. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Preparation of 5-O-(4,4'-dimethoxytrityl)-2-O-tert-butyldimethylsilyl-1,4-anhydro-D-ribitol (3) Basic Protocol 2: Preparation of 5-O-(4,4'-dimethoxytrityl)-2-O-tert-butyldimethylsilyl-3-O-[(N,N-diisopropylamino)ethyloxyphosphinyl]-1,4-anhydro-D-ribitol (6). Basic Protocol 3: Automated synthesis of the chimeric solid-phase-linked DNA sequence 8. Support Protocol: Preparation of 2-cyanoethyl-(5-oxohexyl)-N,N-diisopropylphosphoramidite (9). Basic Protocol 4: Solid-phase purification of the chimeric DNA sequence 10.


Assuntos
Ácidos Nucleicos , Técnicas de Síntese em Fase Sólida , Compostos Organofosforados
2.
Curr Protoc ; 2(7): e481, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35862131

RESUMO

A combined enzymatic and chemical synthesis of a 2'-O-cyanoethoxymethyl (CEM) protected [1',6-13 C2 , 5-2 H]-uridine phosphoramidite is described herein. This is the first report of an atom-specific nucleobase and ribose labeled 2'-O-CEM protected ribonucleoside phosphoramidite. Importantly, the CEM 2'-OH protecting group permits the efficient solid-phase synthesis of large (>60 nucleotides) RNAs with good yield and purity. The new isotope-labeled phosphoramidite can therefore be applied to nuclear magnetic resonance (NMR) spectroscopy studies. Specifically, the [1',6-13 C2 , 5-2 H]-uridine phosphoramidite can be used to make position-specifically labeled RNAs for NMR analysis without complications from resonance overlap and scalar and dipolar couplings. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the ribonucleoside 6 Basic Protocol 2: Synthesis of the ribonucleoside phosphoramidite 11.


Assuntos
Ribonucleosídeos , Compostos Organofosforados , RNA , Uridina/análogos & derivados
3.
Curr Protoc ; 2(1): e346, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35030289

RESUMO

The implementation of protecting groups for 2'-hydroxyl function of ribonucleosides is very demanding in that synthetic RNA sequences must be highly pure to ensure the safety and efficacy of nucleic acid-based drugs for treatment of human diseases. A synthetic approach consisting of a condensation reaction between 2'-O-aminoribonucleosides with ethyl pyruvate has been employed to provide stable 2'-O-imino-2-methyl propanoic acid ethyl esters. Conversion of these esters to fully protected ribonucleoside phosphoramidite monomers has allowed rapid and efficient incorporation of 2'-O-protected ribonucleosides into RNA sequences while minimizing the formation of process-related impurities during solid-phase synthesis. Two chimeric 20-mer RNA sequences have been synthesized and then exposed to a solution of sodium hydroxide to saponify the 2'-O-imino-2-methyl propanoic acid ethyl ester protecting groups to their sodium salts. When subjected to ion-exchange conditions at 65°C and near neutral pH, fully deprotected RNA sequences are isolated without production of alkylating side-products and/or formation of mutagenic nucleobase adducts. © 2022 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Synthesis of uridine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 2: Synthesis of N6 -protected adenosine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 3: Synthesis of N4 -protected cytidine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 4: Synthesis of N2 -protected guanosine 2'-O-imino-2-propanoic acid ethyl ester and its fully protected 3'-O-phosphoramidite Basic Protocol 5: Automated solid-phase RNA synthesis and deprotection using 2'-O-imino-2-proponate-protected phosphoramidites.


Assuntos
Ribonucleosídeos , Técnicas de Síntese em Fase Sólida , Arabinonucleosídeos , Sequência de Bases , Humanos , RNA
4.
Curr Protoc ; 1(5): e108, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33945676

RESUMO

The preparation of controlled pore glass (CPG) supports, functionalized with several hexaethylene glycol spacers, to alleviate the problems associated with the porosity of commercial CPG supports is described in this article. The pore size of CPG restricts the diffusion of reagents to the leader nucleoside embedded in porous supports; this inhibits efficient solid-phase syntheses of DNA and RNA sequences and, by default, the purity of those sequences through formation of a shorter than full-length oligonucleotide. Functionalization of a CPG support with five hexaethylene glycol spacers led to a 42% reduction in process-related impurities contaminating oligonucleotide sequences, compared to that obtained using the commercial long-chain alkylamine (LCAA) CPG support. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Preparation of the hydroxylated CPG support 3 Basic Protocol 2: Automated preparation of the CPG support 6 Basic Protocol 3: Automated preparation of the poly(hexaethylene glycol)-derived CPG 7 Basic Protocol 4: Automated functionalization of the poly(hexaethylene glycol)-derived CPG support 7 with leader deoxyribo- and ribonucleosides to provide the CPG support 9 Basic Protocol 5: Automated syntheses of DNA and RNA sequences on poly(hexaethylene glycol)-derived CPG support 9 and on a commercial long-chain alkylamine (LCAA) CPG support Support Protocol: Release and deprotection of the DNA and RNA sequences linked to the poly(hexaethylene glycol)-derived CPG support 10 and commercial LCAA-CPG support Basic Protocol 6: Comparative RP-HPLC analyses of crude, fully deprotected DNA or RNA sequences released from the poly(hexaethylene glycol)-derived CPG support 10 and from a commercial LCAA-CPG support.


Assuntos
DNA , Técnicas de Síntese em Fase Sólida , Sequência de Bases , Vidro , Oligonucleotídeos
5.
J Org Chem ; 86(7): 4944-4956, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33706514

RESUMO

The implementation of protecting groups for the 2'-hydroxyl function of ribonucleosides is still challenging, particularly when RNA sequences must be of the highest purity for therapeutic applications as nucleic acid-based drugs. A 2'-hydroxyl-protecting group should optimally (i) be easy to install; (ii) allow rapid and efficient incorporation of the 2'-O-protected ribonucleosides into RNA sequences to minimize, to the greatest extent possible, the formation of process-related impurities (e.g., shorter than full-length sequences) during solid-phase synthesis; and (iii) be completely cleaved from RNA sequences without the production of alkylating side products and/or formation of mutagenic nucleobase adducts. The reaction of 2'-O-aminoribonucleosides with ethyl pyruvate results in the formation of stable 2'-O-imino-2-methyl propanoic acid ethyl esters and, subsequently, of the fully protected ribonucleoside phosphoramidite monomers, which are required for the solid-phase synthesis of two chimeric RNA sequences (20-mers) containing the four canonical ribonucleosides. Upon treatment of the RNA sequences with a solution of sodium hydroxide, the 2'-O-imino-2-methyl propanoic acid ethyl ester-protecting groups are saponified to their sodium salts, which after ion exchange underwent quantitative intramolecular decarboxylation under neutral conditions at 65 °C to provide fully deprotected RNA sequences in marginally better yields than those obtained from commercial 2'-O-tert-butyldimethylsilyl ribonucleoside phosphoramidites under highly similar conditions.


Assuntos
Ribonucleosídeos , Técnicas de Síntese em Fase Sólida , Sequência de Bases , Compostos Organofosforados , Propionatos , RNA
6.
Bioorg Med Chem ; 28(22): 115779, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007546

RESUMO

With the intent of mitigating the formation of process-related impurities during solid-phase synthesis of DNA or RNA sequences, a hydroxylated controlled-pore glass support conjugated to three, five or seven hexaethylene glycol spacers was prepared and demonstrated to provide a more efficient and robust synthesis process. Indeed, the use of a support conjugated to five hexaethylene glycol spacers led to a 19% up to 42% reduction of process-related impurities contaminating synthetic nucleic acid sequences, when compared to that obtained from the same DNA/RNA sequences synthesized using a commercial long-chain alkylamine controlled-pore glass support under highly similar conditions.


Assuntos
DNA/síntese química , Preparações Farmacêuticas/síntese química , RNA/síntese química , Técnicas de Síntese em Fase Sólida , Sequência de Bases , DNA/química , Etilenoglicóis , Preparações Farmacêuticas/química , RNA/química
7.
PLoS Negl Trop Dis ; 14(2): e0008050, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109251

RESUMO

Cutaneous leishmaniasis (CL) affects the lives of 0.7-1 million people every year causing lesions that take months to heal. These lesions can result in disfiguring scars with psychological, social and economic consequences. Antimonials are the first line of therapy for CL, however the treatment is lengthy and linked to significant toxicities; further, its efficacy is variable and resistant parasites are emerging. Shorter or lower dose antimonial treatment regimens, which would decrease the risk of adverse events and improve patient compliance, have shown reduced efficacy and further increase the risk emergence of antimonial-resistant strains. The progression of lesions in CL is partly determined by the immune response it elicits, and previous studies showed that administration of immunomodulatory type D CpG ODNs, magnifies the immune response to Leishmania and reduces lesion severity in nonhuman primates (NHP) challenged with Leishmania major or Leishmania amazonensis. Here we explored whether the addition of a single dose of immunomodulating CpG ODN D35 augments the efficacy of a short-course, low-dose pentavalent antimonial treatment regimen. Results show that macaques treated with D35 plus 5mg/kg sodium stibogluconate (SbV) for 10 days had smaller lesions and reduced time to re-epithelization after infection with Leishmania major. No toxicities were evident during the studies, even at doses of D35 10 times higher than those used in treatment. Critically, pentavalent antimonial treatment did not modify the ability of D35 to induce type I IFNs. The findings support the efficacy of D35 as adjuvant therapy for shorter, low dose pentavalent antimonial treatment.


Assuntos
Leishmaniose Cutânea/tratamento farmacológico , Oligodesoxirribonucleotídeos/classificação , Oligodesoxirribonucleotídeos/uso terapêutico , Animais , Antimônio/administração & dosagem , Antimônio/farmacologia , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Leishmania major , Leishmaniose Cutânea/parasitologia , Leucócitos Mononucleares/efeitos dos fármacos , Macaca fascicularis , Masculino , Oligodesoxirribonucleotídeos/administração & dosagem
8.
Front Immunol ; 11: 629399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633747

RESUMO

Neoantigen formation due to the interaction of drug molecules with human leukocyte antigen (HLA)-peptide complexes can lead to severe hypersensitivity reactions. Flucloxacillin (FLX), a ß-lactam antibiotic for narrow-spectrum gram-positive bacterial infections, has been associated with severe immune-mediated drug-induced liver injury caused by an influx of T-lymphocytes targeting liver cells potentially recognizing drug-haptenated peptides in the context of HLA-B*57:01. To identify immunopeptidome changes that could lead to drug-driven immunogenicity, we used mass spectrometry to characterize the proteome and immunopeptidome of B-lymphoblastoid cells solely expressing HLA-B*57:01 as MHC-I molecules. Selected drug-conjugated peptides identified in these cells were synthesized and tested for their immunogenicity in HLA-B*57:01-transgenic mice. T cell responses were evaluated in vitro by immune assays. The immunopeptidome of FLX-treated cells was more diverse than that of untreated cells, enriched with peptides containing carboxy-terminal tryptophan and FLX-haptenated lysine residues on peptides. Selected FLX-modified peptides with drug on P4 and P6 induced drug-specific CD8+ T cells in vivo. FLX was also found directly linked to the HLA K146 that could interfere with KIR-3DL or peptide interactions. These studies identify a novel effect of antibiotics to alter anchor residue frequencies in HLA-presented peptides which may impact drug-induced inflammation. Covalent FLX-modified lysines on peptides mapped drug-specific immunogenicity primarily at P4 and P6 suggesting these peptide sites as drivers of off-target adverse reactions mediated by FLX. FLX modifications on HLA-B*57:01-exposed lysines may also impact interactions with KIR or TCR and subsequent NK and T cell function.


Assuntos
Floxacilina/imunologia , Antígenos HLA-B/imunologia , Haptenos/imunologia , Peptídeos/imunologia , Animais , Linhagem Celular , Antígenos HLA-B/genética , Humanos , Camundongos , Camundongos Transgênicos , Peptídeos/genética
9.
Curr Protoc Nucleic Acid Chem ; 77(1): e84, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30970180

RESUMO

The physiological functions of c-di-GMP and its involvement in many key processes led to its recognition as a major and ubiquitous bacterial second messenger. Aside from being a bacterial signaling molecule, c-di-GMP is also an immunostimulatory molecule capable of inducing innate and adaptive immune responses through maturation of immune mammalian cells. Given the broad biological functions of c-di-GMP and its potential applications as a nucleic-acid-based drug, the chemical synthesis of c-di-GMP has drawn considerable interest. An improved phosphoramidite approach to the synthesis of c-di-GMP is reported herein. The synthetic approach is based on the use of a 5'-O-formyl protecting group, which can be rapidly and chemoselectively cleaved from a key dinucleotide phosphoramidite intermediate to enable a cyclocondensation reaction leading to a fully protected c-di-GMP product in a yield ∼80%. The native c-di-GMP is isolated, after complete deprotection, in an overall yield of 36% based on the commercial ribonucleoside used as starting material. © 2019 by John Wiley & Sons, Inc.


Assuntos
GMP Cíclico/análogos & derivados , Amidas/química , Amidas/isolamento & purificação , GMP Cíclico/síntese química , Ésteres/química , Ácidos Fosfóricos/química , Ácidos Fosfóricos/isolamento & purificação , Ribonucleosídeos/síntese química
10.
Curr Protoc Nucleic Acid Chem ; 72(1): 4.81.1-4.81.29, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29927123

RESUMO

A synthetic 8-mer, amphipathic, trans-acting poly-2'-O-methyluridylic thiophosphate triester RNA element (2'-OMeUtaPS) can be prepared using solid-phase synthesis protocols. 2'-OMeUtaPS efficiently mediates the delivery of uncharged polyA-tailed phosphorodiamidate morpholino (PMO) sequences in HeLa pLuc 705 cells, as evidenced by flow cytometry measurements. In this cell line, 2'-OMeUtaPS-mediated transfection of an antisense polyA-tailed PMO sequence induces alternative splicing of an aberrant luciferase pre-mRNA splice site, leading to restoration of functional luciferase, as quantitatively measured using a typical luciferase assay. 2'-OMeUtaPS is also potent at delivering an uncharged antisense polyA-tailed PMO sequence in muscle cells of the mdx mouse model of muscular dystrophy; targeting the polyA-tailed PMO sequence against a splice site of the pre-mRNA encoding mutated dystrophin triggers an alternate splicing event that results in excision of the mutated exon (exon 23) from the pre-mRNA and production of functional dystrophin, as demonstrated by agarose gel electrophoresis. © 2018 by John Wiley & Sons, Inc.


Assuntos
Indicadores e Reagentes/química , Precursores de RNA/química , RNA/química , Transfecção , Processamento Alternativo , Animais , Citometria de Fluxo , Células HeLa , Humanos , Camundongos , Distrofia Muscular Animal/genética , Oligonucleotídeos Antissenso/química
11.
J Pharm Sci ; 107(8): 2055-2062, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29715479

RESUMO

Stability of therapeutic proteins (TPs) is a critical quality attribute that impacts both safety and efficacy of the drug. Size stability is routinely performed during and after biomanufacturing. Dynamic light scattering (DLS) is a commonly used technique to characterize hydrodynamic size of the TPs. Herein, we have developed a novel method to evaluate in-use and thermal stress stability of TPs using algorithm-driven high-throughput DLS. Five marketed TPs were tested under the guidance of customized algorithms. The TPs were evaluated at relevant temperature conditions as well as under dilution and thermal stress for size stability. We found that the TPs were stable under the in-use conditions tested; however, sample loss due to evaporation can lead to large protein aggregates. A combined assessment of autocorrelation function and photos of sample well could be useful in formulation screening. Dilution of TPs also has an impact on the hydrodynamic size. Thermal stress experiments showed the importance of using different data processing methods to access size distribution. Polydispersity index was useful in evaluating sample heterogeneity. Herein, we show that algorithm-driven high-throughput DLS can provide additional supportive information during and after biomanufacturing and the potential to be used in a quality control environment.


Assuntos
Anticorpos Monoclonais/química , Difusão Dinâmica da Luz/métodos , Preparações Farmacêuticas/química , Proteínas/química , Algoritmos , Estabilidade de Medicamentos , Humanos , Tamanho da Partícula , Agregados Proteicos , Estabilidade Proteica , Temperatura
12.
Biotechnol Appl Biochem ; 65(3): 467-475, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29023997

RESUMO

A rapid and cost-effective transient transfection method for mammalian cells is essential for screening biopharmaceuticals in early stages of development. A library of 25 amphipathic trans-acting oligodeoxythymidine phosphorothioate triester (dTtaPS) transfection reagents, carrying positively charged and lipophilic groups, has been constructed for this purpose. High-throughput screening of the library, using an imaging cytometer and an automated microbioreactor system, has led to the identification of dTtaPS10+ as a potent transfection reagent. This reagent efficiently delivers a plasmid encoding enhanced green fluorescent protein in adherent HeLa cells while exhibiting low cytotoxicity. The microbioreactor system has been particularly useful for assessing the ability of dTtaPS10+ to deliver a plasmid encoding immunoglobulin IgG1 in a fed-batch serum-free suspension CHO cell culture; dTtaPS10+ -mediated transfection resulted in the production of IgG1 in yields comparable to or better than those obtained with commercial lipid-based transfection reagents under similar conditions. The ability of dTtaPS10+ to deliver plasmids is essentially unaffected by the presence of a silicone-based antifoaming reagent, which is commonly used in bioreactor cell cultures. The transfection efficiency of lyophilized dTtaPS10+ -plasmid complexes has been significantly restored upon aqueous reconstitution when compared to that achieved while using commercial transfection reagent complexes under similar conditions. The results of all experiments underscore the potential of dTtaPS10+ for transient transfection of plasmids into adherent cells and fed-batch serum-free suspension CHO cells and rapid screening of reagents in a microbioreactor system.


Assuntos
Reatores Biológicos , Ensaios de Triagem em Larga Escala , Imunoglobulina G/genética , Oligodesoxirribonucleotídeos/metabolismo , Transfecção/métodos , Animais , Células CHO , Células Cultivadas , Cricetulus , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Oligodesoxirribonucleotídeos/química
13.
Curr Protoc Nucleic Acid Chem ; 69: 10.17.1-10.17.30, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628204

RESUMO

An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5'-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5'-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley & Sons, Inc.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , DNA/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , DNA/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
14.
Phys Biol ; 14(4): 046001, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28585521

RESUMO

Amyloid fibrils are highly structured protein aggregates associated with a wide range of diseases including Alzheimer's and Parkinson's. We report a structural investigation of an amyloid fibril model prepared from a commonly used plasma protein (bovine serum albumin (BSA)) using small-angle x-ray scattering (SAXS) technique. As a reference, the size estimates from SAXS are compared to dynamic light scattering (DLS) data and the presence of amyloid-like fibrils is confirmed using Congo red absorbance assay. Our SAXS results consistently show the structural transformation of BSA from spheroid to rod-like elongated structures during the fibril formation process. We observe the elongation of fibrils over two months with fibril length growing from 35.9 ± 3.0 nm to 51.5 ± 2.1 nm. Structurally metastable fibrils with distinct SAXS profiles have been identified. As proof of concept, we demonstrate the use of such distinct SAXS profiles to detect fibrils in the mixture solutions of two species by estimating their volume fractions. This easily detectable and well-characterized amyloid fibril model from BSA can be readily used as a control or standard reference to further investigate SAXS applications in the detection of structurally diverse amyloid fibrils associated with protein aggregation diseases.


Assuntos
Amiloide/química , Difusão Dinâmica da Luz , Modelos Biológicos , Espalhamento a Baixo Ângulo , Difração de Raios X , Soroalbumina Bovina/química , Fatores de Tempo
15.
Nanoscale ; 9(6): 2291-2300, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28127597

RESUMO

Colloidal nanoparticles have shown tremendous potential as cancer drug carriers and as phototherapeutics. However, the stability of nanoparticles under physiological and phototherapeutic conditions is a daunting issue, which needs to be addressed in order to ensure a successful clinical translation. The design, development and implementation of unique algorithms are described herein for high-throughput hydrodynamic size measurements of colloidal nanoparticles. The data obtained from such measurements provide clinically-relevant particle size distribution assessments that are directly related to the stability and aggregation profiles of the nanoparticles under putative physiological and phototherapeutic conditions; those profiles are not only dependent on the size and surface coating of the nanoparticles, but also on their composition. Uncoated nanoparticles showed varying degrees of association with bovine serum albumin, whereas PEGylated nanoparticles did not exhibit significant association with the protein. The algorithm-driven, high-throughput size screening method described in this report provides highly meaningful size measurement patterns stemming from the association of colloidal particles with bovine serum albumin used as a protein model. Noteworthy is that this algorithm-based high-throughput method can accomplish sophisticated hydrodynamic size measurement protocols within days instead of years it would take conventional hydrodynamic size measurement techniques to achieve a similar task.


Assuntos
Coloides/química , Portadores de Fármacos , Ensaios de Triagem em Larga Escala , Nanopartículas , Algoritmos , Tamanho da Partícula , Soroalbumina Bovina
16.
Curr Protoc Nucleic Acid Chem ; 64(1): 4.69.1-4.69.22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27516815

RESUMO

An innovative approach to the delivery of uncharged peptide nucleic acids (PNAs) and phosphorodiamidate morpholino (PMO) oligomers in mammalian cells is described and consists of extending the sequence of those oligomers with a short PNA-polyA or PMO-polyA tail. Recognition of the polyA-tailed PNA or PMO oligomers by an amphipathic trans-acting polythymidylic thiophosphate triester element (dTtaPS) results in efficient internalization of those oligomers in several cell lines. The authors' findings indicate that cellular uptake of the oligomers occurs through an energy-dependent mechanism and macropinocytosis appears to be the predominant endocytic pathway used for internalization. The functionality of the internalized oligomers is demonstrated by alternate splicing of the pre-mRNA encoding luciferase in HeLa pLuc 705 cells. Amphipathic phosphorothioate DNA elements may represent a unique class of cellular transporters for robust delivery of uncharged nucleic acid sequences in live mammalian cells. © 2016 by John Wiley & Sons, Inc.

17.
J Org Chem ; 81(15): 6165-75, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27382974

RESUMO

Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.


Assuntos
DNA/síntese química , Técnicas de Síntese em Fase Sólida , Animais , Sequência de Bases , Cromatografia Líquida de Alta Pressão , DNA/química , Escherichia coli/enzimologia , Espectroscopia de Ressonância Magnética , Ácidos Nucleicos , Compostos Organofosforados , Fosfatos/química , Dióxido de Silício/química , Venenos de Serpentes/enzimologia
18.
EMBO Rep ; 14(10): 900-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24008845

RESUMO

The cyclic dinucleotides 3'-5'diadenylate (c-diAMP) and 3'-5' diguanylate (c-diGMP) are important bacterial second messengers that have recently been shown to stimulate the secretion of type I Interferons (IFN-Is) through the c-diGMP-binding protein MPYS/STING. Here, we show that physiologically relevant levels of cyclic dinucleotides also stimulate a robust secretion of IL-1ß through the NLRP3 inflammasome. Intriguingly, this response is independent of MPYS/STING. Consistent with most NLRP3 inflammasome activators, the response to c-diGMP is dependent on the mobilization of potassium and calcium ions. However, in contrast to other NLRP3 inflammasome activators, this response is not associated with significant changes in mitochondrial potential or the generation of mitochondrial reactive oxygen species. Thus, cyclic dinucleotides activate the NLRP3 inflammasome through a unique pathway that could have evolved to detect pervasive bacterial pathogen-associated molecular patterns associated with intracellular infections.


Assuntos
Proteínas de Transporte/metabolismo , GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/farmacologia , Inflamassomos/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , GMP Cíclico/farmacologia , Humanos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Bioorg Med Chem ; 21(20): 6224-32, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23755885

RESUMO

The bioactivity of a CpG-containing phosphorothioate DNA oligonucleotide with thermolytic 2-(N-formyl-N-methylamino)ethyl (fma) thiophosphate groups in mice led us to investigate the parameters affecting the internalization of these thermosensitive DNA prodrugs in various cell lines. Flow cytometry and confocal microscopy analyses indicate that 5'-fluoresceinated fma-phosphorothioate DNA sequences are poorly internalized in Vero, HeLa and GC-2 cells. However, when four fma-thiophosphate groups of a 15-nucleotide long oligothymidylate prodrug are replaced with 3-(N,N-dimethylamino)prop-1-yl thiophosphate functions, internalization of the positively charged prodrug, under physiological conditions, increased fourfold in HeLa and 40-fold in Vero or GC-2 cells. No cytotoxic effects are observed in Vero cells even at an extracellular prodrug concentration of 50 µM over a period of 72 h. Confocal microscopy studies show that internalization of the positively charged oligothymidylate prodrug in Vero cells is time-dependent with early trafficking of the DNA sequence through endosomal vesicles and, eventually, to the nucleus of the cells. Thus, the incorporation of four 3-(N,N-dimethylamino)prop-1-yl thiophosphate groups into thermosentive fma-phosphorothioate DNA prodrugs is an attractive strategy for efficient cellular internalization of these nucleic acid-based drugs for potential therapeutic indications.


Assuntos
DNA/química , DNA/farmacocinética , Oligonucleotídeos/química , Oligonucleotídeos/farmacocinética , Pró-Fármacos/farmacocinética , Animais , Chlorocebus aethiops , Fluoresceínas/química , Células HeLa , Humanos , Lipídeos/química , Lipídeos/farmacocinética , Camundongos , Microscopia Confocal , Tionucleotídeos/química , Tionucleotídeos/farmacocinética , Células Vero
20.
Curr Protoc Nucleic Acid Chem ; Chapter 14: 14.9.1-14.9.20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23512694

RESUMO

Commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-(propargyl)guanosine is converted to its 3'-O-levulinyl ester in a yield of 91%. The reaction of commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl]guanosine with N(2)-isobutyryl-2'-O-propargyl-3'-O-(levulinyl)guanosine provides, after P(III) oxidation, 3'-/5'-deprotection, and purification, the 2'-O-propargylated guanylyl(3'-5')guanosine 2-cyanoethyl phosphate triester in a yield of 88%. Phosphitylation of this dinucleoside phosphate triester with 2-cyanoethyl tetraisopropylphosphordiamidite and 1H-tetrazole, followed by an in situ intramolecular cyclization, gives the propargylated cyclic dinucleoside phosphate triester, which is isolated in a yield of 40% after P(III) oxidation and purification. Complete removal of the nucleobases, phosphates, and 2'-O-tert-butyldimethylsilyl protecting groups leads to the desired propargylated c-di-GMP diester. Cycloaddition of a biotinylated azide with the propargylated c-di-GMP diester under click conditions provides the biotinylated c-di-GMP conjugate in an isolated yield of 62%. Replacement of the 6-oxo function of N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-3'-O-levulinyl-2'-O-(propargyl)guanosine with a 2-cyanoethylthio group is effected by treatment with 2,4,6-triisopropybenzenesulfonyl chloride and triethylamine to give a 6-(2,4,6-triisopropylbenzenesulfonic acid) ester intermediate. Reaction of this key intermediate with 3-mercaptoproprionitrile and triethylamine, followed by 5'-dedimethoxytritylation, affords the 6-(2-cyanoethylthio)guanosine derivative in a yield of 70%. The 5'-hydroxy function of this derivative is reacted with commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl]guanosine. The reaction product is then converted to the mono-6-thioated c-di- GMP biotinylated conjugate under conditions highly similar to those described above for the preparation of the biotinylated c-di-GMP conjugate, and isolated in similar yields.


Assuntos
Biotinilação/métodos , Química Click/métodos , GMP Cíclico/análogos & derivados , Guanosina Monofosfato/análogos & derivados , Azidas/química , GMP Cíclico/química , Fosfatos de Dinucleosídeos/química , Guanosina/química , Guanosina Monofosfato/química , Tetrazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...